



## Galdieria-Medium

Original recipe as in:

Gross & Schnarrenberger (1995), modified according to Allen's *Cyanidium* Medium, modified (Allen 1959, Watanabe *et al.* 2000).

further references:

Allen, M.B. (1959): Studies with *Cyanidium caldarium*, an anomalously pigmented chlorophyte. - *Arch. Mikrobiol.* **32**(3): 270-277.

Gross, W. & Schnarrenberger, C. (1995): Heterotrophic growth of two strains of the acido-thermophilic red alga *Galdieria sulphuraria*. - *Plant Cell Physiol.* **36**(4): 633-638.

Watanabe et al. 2000: > see present online-catalogue of NIES collection

For 1000 mL final culture medium add the following quantities (Volume/Mass) of stock solutions (SL) prepared at the given concentrations to 850 mL dd-H<sub>2</sub>O. Add <u>one component after the other until</u> <u>each one has completely mixed</u> and finally fill up to 1000 mL.

All stock solutions can be stored unsterilised at 4 °C. Store sterile-filtered vitamin mix (SL 12) at -20 °C.

| Stock<br>Solution<br>(SL)                          | Volume<br>or<br>Mass               | Component                                                                                                                                                                                                | Concentration in SL                                                                                                                                                                                           | Concentration in final Medium                                                                                                                                                                           |
|----------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -<br>-<br>-<br>-                                   | 1.50 g<br>0.30 g<br>0.30 g<br>1 mL | (NH₄)2SO₄<br>MgSO₄ • 7H₂O<br>KH₂PO₄<br>CaCl₂• 2H₂O                                                                                                                                                       | -<br>-<br>2 g • 100 mL <sup>-1</sup>                                                                                                                                                                          | 1.1 • 10 <sup>-2</sup> M<br>1.2 • 10 <sup>-3</sup> M<br>2.2 • 10 <sup>-3</sup> M<br>1.3 • 10 <sup>-4</sup> M                                                                                            |
| Fe-EDTA                                            | 2.07 mL                            | EDTA (not as Na-salt)<br>FeSO4 ∙ 7H₂O<br>KOH 1n                                                                                                                                                          | 0.52 g • 100 mL <sup>-1</sup><br>0.5 g • 100 mL <sup>-1</sup><br>5.4 ml • 100 mL <sup>-1</sup>                                                                                                                | 3.66 • 10 <sup>-5</sup> M<br>3.70 • 10 <sup>-5</sup> M<br>1.11 • 10 <sup>-6</sup> M                                                                                                                     |
| Trace<br>elements<br>solution<br>(Allen<br>metals) | 1 mL                               | $\begin{array}{l} ZnSO_{4} \cdot 7H_{2}O \\ H_{3}BO_{3} \\ CoCL_{2} \cdot 6H_{2}O \\ CuSO_{4} \cdot 5H_{2}O \\ (NH_{4})_{6}Mo_{7}O_{27} \cdot 6H_{2}O \\ NaVO_{3} \\ MnCl_{2} \cdot 4H_{2}O \end{array}$ | 220 mg • 1 L <sup>-1</sup><br>2860 mg • 1 L <sup>-1</sup><br>40 mg • 1 L <sup>-1</sup><br>79 mg • 1 L <sup>-1</sup><br>130 mg • 1 L <sup>-1</sup><br>40 mg • 1 L <sup>-1</sup><br>1790 mg • 1 L <sup>-1</sup> | 7.65 • 10 <sup>-7</sup> M<br>4.63 • 10 <sup>-5</sup> M<br>1.68 • 10 <sup>-7</sup> M<br>6.40 • 10 <sup>-6</sup> M<br>2.10 • 10 <sup>-7</sup> M<br>3.28 • 10 <sup>-7</sup> M<br>9.04 • 10 <sup>-6</sup> M |

Combine all trace elements in one SL. Dissolve each component completely one after the other. It may need autoclaving to dissolve. Trace elements solution should **not** be stored in glass containers, but instead in teflon or polycarbonate containers to prevent adsorption of metals to container surface.

## Adjust medium to final pH of 1.8 or as desired with 0.5 M $H_2SO_4$ and autoclave at 121 $^\circ C$ for 20 min.

For stock cultures on agar slants add 1.0-1.3 % Agar (e.g. purified high strength, 1000 g  $\cdot$  cm<sup>-2</sup>) to prepared medium before autoclaving. The pH must be lowered to 4-4.5, otherwise the agar will not solidify.

1 % glucose may be added for heterotrophic cultivation in the dark.